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Stuttgart-80, Federal Republic of Germany 
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Abstract. The present paper is concerned with the problem of the polaronic states of 
positively charged particles in crystals. In contrast to the commonly considered case of 
electronic polarons such particles tend to reside on the interstitial sites of the crystal. To 
work out the consequences of this fact the interstitial-polaron model is investigated. This 
model is a slight modification of Holstein’s molecular-crystal model treated in part I of this 
series. Using the variational approach introduced in part I a new class of polaronic states 
appears to become stable in some parameter region in addition to the various types of states 
existing for the molecular-crystal model. These states will be called two-site states since they 
describe a particle effectively tunnelling between two neighbouring sites. They are shown 
to be increasingly important if a configuration dependence of the transfer integral is taken 
into account. The two-site states may be considered as a one-dimensional analogue of the 
4T states which have been proposed for hydrogen and its isotopes in BCC metals. 

1. Introduction 

The behaviour of light positively charged particles like hydrogen nuclei, positive muons 
and pions, and positrons in metals and semiconductors has been investigated for about 
two decades (for a review see Alefeld and Voelkl(l978)). During the last few years the 
question of a crossover from coherent motion at low temperatures to incoherent hopping 
at higher temperatures has attracted great experimental and theoretical interest (for a 
review see Richter (1986)). Up to now the coherent states of these particles have been 
described using the theoretical concepts developed for electronic polarons. Differences 
which might arise from the fact that positively charged particles in contrast to electrons 
prefer to reside on the interstitial sitesof acrystal can therefore not be noticed. Numerical 
calculation on hydrogen isotopes in BCC metals (Sugimoto and Fukai 1981, Klamt and 
Teichler 1986) strongly suggest that in these systems, especially for very light particles, 
states delocalised over four tetrahedral sites (4T states) become stable with respect to 
states localised at a single tetrahedral site (1T states). Owing to lack of translational 
invariance neither the 1T states nor the 4T states are exact coherent eigenstates of the 
system. It is straightforward to overcome this lack by construction of coherent polaron 
solutions starting from localised 1T states using conventional polaron theories. However 
it is by far uncertain how to construct polaronic 4T states, although these may be the 
ground states of light positively charged particles in BCC metals. 
t Present address: Bayer AG, AV-IM-AM, D-5090 Leverkusen, Federal Republic of Germany. 
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Figure 1. Schematic representation of the polaron 
models: (a) the molecular-crystal model; ( b )  the 
interstitial-polaron model. The oscillators may be 
thought of as diatomic molecules. The arrows 
denote the forces exerted by a particle in the occu- 
pied (filled) particle state. 

In this paper for the first time an interstitial-polaron model (IPM) will be investigated. 
The IPM is a slight modification of the molecular-crystal model (MCM) which has been 
introduced by Holstein (1959a, b) and has been reconsidered by the author in part I of 
this series concerning tight-binding polarons (Klamt 1988). It will be shown that two- 
site states (2s states) analogous to the previously mentioned 4T states do in fact appear 
as stable polaronic solutions despite the simplicity and one-dimensionality of the model. 

The paper is organised as follows. First a short description of the IPM will be given. 
Then the polaronic solutions will be investigated using the powerful variational approach 
introduced in part I. Thereafter the IPM will be expanded beyond the Condon approxi- 
mation (CA) by inclusion of a configuration dependence of the transfer integral. Finally 
the results will be summarised and discussed. 

2. The interstitial-polaron model 

In his MCM Holstein considered a light particle moving through a linear chain of non- 
interacting oscillators. The particle states are assumed to be tightly bound to the oscil- 
lators. When a particle is occupying such a state it is interacting linearly with the entire 
oscillator. The MCM is shown schematically in figure l(a). Denoting the reduced mass of 
one oscillator by M and the oscillator frequency by o and introducing the oscillator units 
o-l, (h/Mw)”* and hw for time, length and energy, respectively, the Hamiltonian of 
the MCM has been shown to be 

H = H L +  Hp+ HI. (1) 
Here 

is the lattice Hamiltonian with Q, being the degree of freedom of the oscillator a. 
Denoting the transfer integral by J and using the annihilation and creation operators a, 
and a,’ for a particle in the localised state q, the particle Hamiltonian takes the form 

H P  = -JC (a,+aa+l + a,f+laa). (3) 
a 

Finally in the MCM the linear interaction is described by 

HI = -A QaaLaa 
a 

(4) 

where A is the force acting on the oscillator. 
Let us now consider the slightly modified model shown in figure l(b). In this model 

each particle state p?@ is no longer centred at oscillator a but between the oscillators a 
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and a + 1, i.e. at an interstitial site. We shall call this model the interstitial-polaron 
model (IPM). While the lattice Hamiltonian as well as the particle Hamiltonian remain 
the same as in the MCM, the interaction Hamiltonian now takes the form 

since a particle in state qn now interacts with both its neighbouring oscillators. 
Before turning to the variational calculations the two obvious limiting cases will be 

considered. For vanishing interaction (A 4 0) the particle ground state is a simple band 
state with wavevector k equal 0 and energy -2J as it is in the MCM. On the other hand 
for vanishing transfer integral J the particle is localised at a single interstitial site and the 
neighbouring oscillators are displaced by A. The total energy of this state is -A2 
compared with -JA2 in the MCM. 

3. Variational calculations 

In this section we look for the ground state of the system using the variational approach 
introduced in part I. The concepts of this approach will not be discussed here again. The 
reader therefore should recap on the corresponding chapter in part I. Let us start with 
the wavefunction 

where 

for x = is and 2s. Here c and s are the weights of the one-site (is) and two-site (2s) 
wavefunctions and 

c y  = [(1 - A*)/ (1  + A 2 ) ] 1 / *  Ala1 (Sa) 

q?$s = pvlBI ( 8 4  

where K ,  A ,  p and v are extension parameters of the particle wavefunctions and the 
displacement fields, respectively, with 0 s K, A, p, v 6 1, and q andp are the maximum 
oscillator displacements. During the following considerations we are mostly interested 
in the ground state and thus adopt k = 0 in equation (6). The wavefunction YLs is a 
product wavefunction with a centre of inversion between the oscillators a and a + 1, 
i.e. at the tight-binding particle state qn. Thereforewecallit aparticle-centredwavefunc- 
tion. Conversely Y ”,” is a product wavefunction with an inversion centre at oscillator a 
and hence may be called oscillator-centred. Since the particle amplitude has maximum 
amplitude on the two neighbouring interstitial sites a and a + 1, we shall also use the 
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name two-site (2s) wavefunction in contrast to one-site (is) wavefunction for !Pis. For 
the particle wavefunction amplitudes c; and the oscillator displacements 4; we have 
used the geometric approach, which has proved to provide good results for the MCM 
(part I) and allows one to evaluate analytically the matrix elements appearing in the 
total energy expression 

The evaluation is performed in the Appendix. Since the summations with respect to CY 
cannot be performed analytically the variation of the total energy with respect to the 
variational parameters has in general to be performed by numerical means. Before doing 
this we shall investigate some limiting cases. 

3. I .  The adiabatic limit 

The adiabatic limit is the limit of nearly static, but possibly quite extended polarons for 
which the terms with a #  0, i.e. the coherent or dynamic terms, do not contribute 
substantially to the total energy. In this limit the is and 2s solutions may be treated 
separately. Within the adiabatic approximation the variation with respect to the q$ can 
be performed easily yielding 

i.e. the oscillator /3 relaxes due to the forces exerted by the particle occupying the two 
adjacent interstitial sites. Using this for the 1s solutions we have K = A* and q = A( 1 - K )  

and the energy functional takes the form 

E:: = -A2[(1 - A2)/ (1  + A’)] - 2J[2;1/(1 + A’)]. (11)  

The variation with respect to A can be performed in closed form, leading to 

A = (1 + A4/4J2)1/2 - A’ /2J  

and 

Ei2 = -(4J2 + A4)1’2. 
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Figure 2. Energy difference E:: - E:: of the adia- 
batic IS and 2s solutions. 

Figure 3. Curves of K = constant for the dynamic 
solutions. 

Using equation (10)  we find for the adiabatic 2s solutions the expressions v = p2, p = 
A(l - v )  and 

(13)  ~ 2 s  ad = - L A 2  4 ( 3  - 4,U2 - ,U4) - J ( l  + 2,U - , U 2 ) .  

Here the variation with respect to ,U cannot be done analytically in general. For small 
polarons ( J / A ~  < 1) 

E:: = -A'($ + J/A2 + J2/A3)  

E:: = - A ~ ( I  + 2 ~ 2 1 ~ 4 )  

(14a) 
can be derived. Comparing this with the corresponding expression 

for the 1s solution, the 2s solution turns out to be unfavourable in the small-polaron limit. 
On the other hand in the limit J/A2 9 1 we find 

E:: = -2J - A 4 / 4 J  - A 6 / 8 J 2  (14b) 
which may be compared with 

E:: -2J - A 4 / 4 J  - A 8 / 6 4 J 3  

for the is solutions. Here both first-order corrections are equal but the 2s solution is 
favourable due to the second-order term. In figure 2 the energy difference EA: - E:: is 
plotted as a function of J / A 2 .  It can be seen that the is solutions have lower energy up 
to J/A2 = 0.466. For larger values of J / A 2  the 2s solutions are favourable. Since for 
J/A2 = 0.466, ,U = 0.25 holds, the transition may be said to take place in the small- 
polaron region. The reason for the stabilisation of the 2s solutions is the more effective 
tunnelling in these states, which for increasing J/A2 overcompensates the slightly worse 
relaxation of the lattice. 

3.2. The dynamic approximation 

In the dynamic approximation we assume that the particle wavefunction is concentrated 
at a single site, i.e. c$ = d,,,, while the displacement field is geometrically decreasing 
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around the occupied interstitial site. Obviously due to this definition only dynamic is 
solutions can exist. The energy functional for these reads 

q2 
1 - K 2  

2Aq - 2Jexp (- ll+~). q 2 1 - K  &dyn = - - 

Variation with respect to q and K yields 

and the implicit expression for the energy 

These are minima when 

1 + K 3  1 
1 - K K(2 K)' 

A 2  < (-1 

(1.6b) 

The curves of solutions J(K, A) according to equation (16) are plotted in figure 3. The 
results are very similar to those derived for the MCM in part I. The limiting expressions 
for the energies of small and large dynamic polarons are 

E d y n  = -A2 - 2Jexp(-iA2) (191 

(20) 

and 
- -2 J - A2J--1/2 

Edyn - 
respectively. 

3.3. General numerical variation 

Having treated the limiting cases to be expected we now turn to the general numerical 
variation of the energy functional. Apart from the two model parameters J and A2, the 
energyfunctional (equation (9)) containss, K ,  A, ,U, v,p  andq asindependent variational 
parameters. Without loss of generality, c may be set to (1 - s2)lI2. To reduce the number 
of parameters we approximate q byA(1 - K) andp byA(1 - v). This approximation is 
suggested by the limiting cases discussed above. Hence we are left with a five-parameter 
variational problem. We solved it on a computer using the above-mentioned limiting 
solutions as starting points of a gradient procedure. The results are shown in figure 4. 
As descriptors for the ground-state properties the 2s portion s2 as well as the mean 
polaron extension parameter K = c 2 ~  + s2v and the mean adiabaticity parameter 
q = c2A2/K + s2p2/v  are displayed as functions of J and A*. Furthermore the boundary 
lines s2 = 0.5 ,  K = 0.5 and q -i 0.5 are displayed in figure 4(d) to provide a synopsis of 
the three parameters. 

Let us first consider figure 4(d) to give a rough classification of the most important 
regions. As in the MCM we find a region of dynamic large-polaron solutions in the upper 
left corner of the diagram, i.e. for J + max(k2, 1). As previously mentioned these 
solutions are purely of is type. Moving anticlockwise through the diagram we then reach 
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Figure 4. Diagrams of the polaronic ground-state properties: (a )  2s portion s2; ( 6 )  mean 
polaron extension parameter K ;  (c) mean adiabaticity parameter 77; and ( d )  synopsis of the 
liness’ = 0.5, K = 0.5 and 77 = 0.5. 

a region of small dynamic solutions which continuously turns over to the small adiabatic 
is solutions in the lower right corner. At  the line J = 0.466A2 the ground state takes the 
form of adiabatic 2s solutions which can be considered as relatively small polarons since 
the extension parameter v ranges from 0.1 to 0.7 in the 2s region. Finally a narrow area 
of intermediate is solutions can be found between the adiabaticzs region and the dynamic 
is region. These intermediate solutions behave like large adiabatic solutions even though 
the fundamental condition of adiabaticity does not hold. Their nature is discussed in 
part I in some detail. 

Let us now look at the more sophisticated features appearing in figure 4. Mostly 
there is quite a large distance between the lines s2 = 0.1 and s2 = 0.5 in figure 4(a). This 
clearly shows that a small coherent admixture of 2s solutions to the is solutions is 
favourable in a wide parameter range. This feature is pronounced in the region of 
adiabatic is solutions where a bank of 2s admixture can be observed not only along the 
borderline of the region in the large-polaron area but also forming an island within the 
dynamic region in the transition area from large to small dynamic solutions. The exact 
coincidence of the lines s2 = 0.1 and r] = 0.1 along these banks strongly indicates that 
the beginning of the 2s admixture is more discontinuous than smooth. The transition 
from adiabatic is polarons to adiabatic 2s polarons along the line J = 0.466A2 appears 
to be discontinuous forA2 > 65 while it is quite smooth for smaller values of A2. Looking 
in more detail at figure 4(c) we clearly see a smooth increase in the adiabaticity r] during 
the transition from small dynamic to small adiabatic is solutions. 

The transition from the 2s solutions to the intermediate is solutions is continuous as 
indicated by the behaviour of the lines s2 = 0.9 and s2 = 0.5 in the entire region. On the 
other hand, from the behaviour of the r] = 0.5 and q = 0.9 lines, the crossover from the 
intermediate solutions to the dynamic solutions appears to be sharp, at least forA2 > 30. 
This borderline is approximately described by J = 0. 18A2. This seems to be reasonable 
since a similar power law, namelyJ = 0.03A2, has been observed within the MCM. 

Finally in the parameter areaJ  = A2 = 0.5 a most complicated mixing of all limiting 
types of solutions takes place, which cannot be described here in detail. 

By performing the same variational procedure for a small non-zero value of k in 
equation (6) the effective mass m** of the polaron ground state has been calculated as 

m** = k 2 / 2 [ E ( k )  - E(k = O ) ] .  (21) 
This may be compared with the effective mass m* = 1/(2J)  of the particle in a rigid- 
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10 

Figures. Relief diagram of the polaronic effective 
mass. 

lattice tight-binding treatment. In figure 5 a relief diagram of loglo(m**/m*) is shown. 
The areas of different polaronic ground states may be easily recognised. Especially the 
discontinuous crossover lines appear as steps in this diagram. Thus the transition from 
the intermediate to the dynamic solutions turns out to be discontinuous even forA2 < 30. 

4. Configuration-dependent transfer integral 

Within the MCM as well as hitherto in the IPM the Condon approximation (CA) has been 
adopted, i.e. the transfer integral J was assumed to be independent of the actual 
configuration of the lattice. For atom- or molecule-centred tight-binding states there is 
little known about the goodness of the CA. Thus it might be justifiable within the MCM. 
Its validity, however, must not be taken for granted. On the other hand the CA can be 
seen to be poor in the case of the IPM by a glance at figure l (b ) .  The two atoms of each 
oscillator can be assumed to form a bottleneck, i.e. a potential barrier, for the particle. 
This barrier will be lowered by an elongation of the spring, i.e. by apositive displacement 
of the oscillator, and vice versa. Since the transfer integral between two adjacent 
interstitial sites is extremely sensitive to the barrier height, it depends strongly on the 
displacement of the entire oscillator. Such a configuration dependence of the transfer 
integral has been shown to be of considerable importance for the dynamics of hydrogen 
in metals (Klamt and Teichler 1986). These results as well as fundamental quantum 
mechanics strongly suggest the configuration dependence to be of exponential form. 
Therefore we shall investigate the consequences of a configuration-dependent transfer 
integral given by 

J ,  = Jex~[(g/A)Q,l  ( 2 2 )  

throughout this chapter 
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By the afore-mentioned arguments the sign of the dimensionless parameter g clearly 
appears to be positive, while no general estimation of its magnitude can be given. The 
particle Hamiltonian now takes the form 

HP = - J X  exp[(g/A)Q,l(a;aa+i + a,fa,+i). (23) 
a 

The evaluation of the entire matrix element now gives (see Appendix) 

(Y$IH,JY;) = - f e x p ( - ~ y )  

x c exp[(glA)(45 + 45-a>l(C5C$-,+l + C;;+lCyP-,> (24) 
P 

where j = Jexp(ig2/A2) is the expectation value of the transfer integral in the oscillator 
ground-state. To make the summation with respect to p feasible we restrict ourselves 
further to the zero- and first-order terms with respect to g yielding 

(Y$~H,~Y;) = - .Jexp(-Sz) 

x IC c1 + (g/A)(qxp + 4$-a)l(C$$-a+l + C$+lCJ-a>. (25) 
P 

Together with all other sums the new type of sum has been evaluated in the Appendix 
for the geometrical approach given in equations (8) and (9) with the only modification 
that r = qis is treated as a separate variational parameter. 

4.1. Adiabatic solutions 

Again we shall first investigate the adiabatic solutions. Within the adiabatic approxi- 
mation variation with respect to the qp easily yields the expressions 

K = A 2  (26) 

4 =A[1  + 2g~A/(l  + A2)](1 - A 2 )  (27) 

v = p 2  (28) 

p = d ( l  + p2)A(1 + p2 + 2gzp) (29) 

r = (1 - p2)A(1 + zg) (30) 

and 

where the abbreviation z = j /A2 has been introduced. The energy functionals for the is 
and 2s solutions now become 

and 

E ad 
2s = -A2 1 [a(l - p 2 ) ( 3  - p 2 )  fgz(1 - P2)(1 + p - p2) 

+ tzg2(i + 2p - p4)(1 - p2)/(i + p2)  +z(i  + 2p - p 2 ) 1  (32) 

respectively. The variation with respect to A and p has to be performed numerically. The 
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Figure 6.  Wavefunction extension parameters ,I 
and p of the adiabatic is and 2s solutions, respect- 
ively, for six values of the configuration depen- 
dence g. 

Figure 7. Relative energy difference (E:: - 
Eiz)/Ei: of the adiabatic is and 2s solutions for 
six values of g. 

results are plotted in figures 6 and 7 for g varying in the range 0.0 to 0.5. Figure 7 shows 
the behaviour of the wavefunction extension parameters A and p.  For small values of z 
only a slight increase of A and p is effected by the non-zero values of g. On the other 
hand for z %- 1 and g > 0, A and p no longer tend to one: A can be shown to become 0.52 
for z + while p even tends to zero. Thus we may state as an important effect of the 
configuration dependence that it inhibits the appearance of large adiabatic polarons. In 
figure 7 the relative energy difference ( E $  - E$$)/EA$ is drawn as a function of z .  In 
general the 2s solutions can be seen to take greater advantage of the configuration 
dependence. The transition point from 1s to 2s solutions moves slightly towards smaller 
values of z for increasing g, but the more drastic effect is the large energy gain of the 2s 
solutions at large values of z .  

4.2.  Dynamic solutions 

Within the dynamic approximation the energy functional takes the form 

It can easily be seen that in the small-polaron limit the configuration dependence is 
equivalent to an increase in the transfer integral J by a factor (1 + g), while in the large- 
polaron limit it acts like an increase in the interaction A by a factor (1 + J/A2).  

4.3. Numerical calculations 

Since the numerical variation of the energy functional is very time-consuming we content 
ourselves here with the calculation of the energetic minimum of the three basic types of 
solutions, i.e. the adiabatic is and 2s solutions and the dynamic solutions. The borderlines 
between the solution types are plotted in figure 8 for four values of g. Figure 8(a) reveals 
the situation for g = 0 and thus corresponds to figure 5 ( 4 .  The 2s region appears as 
a narrow wedge in the upper right corner. Figures 8(b)-(d) show the effects of a 
configuration-dependent transfer integral for g = 0.1, g = 0.3 andg = 0.5, respectively. 
As previously mentioned with increasing g the borderline between adiabatic 1s and 2s 
solutions moves slightly in favour of the latter. In contrast the boundary between 
adiabatic 2s solutions and dynamic solutions bends strongly even for relatively small 
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Figure 8. Borderlines of the three basic types of solutions together with the lines K = 0.2, 
0.5 and 0.8 of the mean polaron extension parameter for four values of g. 

values of g. In the region originally occupied by large dynamic solutions we now find 
adiabatic 2s polarons with limited and even decreasing extension for large values ofj/A2 
as has been shown in 0 4.1. The borderline between the dynamic and adiabatic 1s 
solutions is nearly unaffected by g. We may thus state that the most important effect of 
a positive configuration dependence g of the transfer integral is the inhibition of large 
dynamic polarons by the appearance of relatively localised 2s solutions. 

5. Summary and discussion 

In the present paper the polaronic behaviour of interstitial particles has been investigated 
for the first time. The appearance of 2s solutions with equal maximal amplitude of the 
particle wavefunction on two neighbouring interstitial sites has turned out to be the most 
important change in the polaronic solution spectrum of the IPM compared with the MCM. 
Even though the existence of analogous more-site states of interstitial particles has been 
proposed before in the context of hydrogen in metals (Sugimoto and Fukai 1981, Klamt 
and Teichler 1986) here for the first time they are embedded within a consistent polaron 
model and thus the conditions for the stability of such solutions could be derived. 
Thus the understanding of this particular type of solutions in comparison with one-site 
solutions and with extended band-like solutions could be improved. 

Furthermore for the first time a polaron model has been extended beyond the Condon 
approximation, i.e. a configuration dependence of the transfer integral has been taken 
into account. An increase of the transfer integral with a widening of the bottleneck 
between two interstitial sites, which appears to be likely for interstitialparticles, is shown 
to increase the importance of the 2s solutions drastically. These solutions now show the 
strange feature of localisation with increasing transfer integral, since it turns out to 
become more effective to widen alimited crystal region and thereby increase the effective 
transfer integral in this region considerably than to increase the gain in kinetic energy 
by delocalisation over a large crystal volume. 

The results of this paper are of some importance for the understanding of the states 
and the dynamics of light positively charged particles in metals as there are positrons, 
positive muons and pions and the three hydrogen nuclei protons, deuterons and tritons 
in order of increasing mass. The result of increasing stability and localisation of more- 
site states with increasing transfer integral raises the question whether the states of 
lighter particles are more extended or perhaps more localised than those of heavier ones. 
Thus even the self-trapping of positrons in metals appears to be realistic. In general the 
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strong dependence of the polaronic ground state on the entire parameterSA andJ,  which 
are likely to vary considerably with the particle mass, makes the interpolation and 
extrapolation of polaronic properties within the above-mentioned series of particles 
much more complicated than usually assumed. The various different possibilities for the 
type of the polaronic ground state should be taken into account in the interpretation of 
all experiments of light positively charged particles especially if questions of coherence 
are concerned. 

Appendix 

The matrix elements (YU., lY$) and (Yc IHlYUY,) may be evaluated in much the same way 
as has been shown in the Appendix of part I. We thus find 

(Y~~YIY,)  = 2 c~pcyp+~ exp(-Sz) 
B 

and 

where 

s y  = ix (4;  - qyp-iy) 2 . 
P 

Here the most general form of the Hamiltonian, i.e. Hp according to equation (24), has 
been used. Results suitable for § 2 may be derived by setting g = 0. For the sake of 
getting closed expressions we use the approximation 

exp[(g /W(qi  + qyp+a)l= [1 + k/2A)(q; + qcyP+IY)l. 
Furthermore we shall use the most general form of the geometric approach, i.e. q; and 
c; according to equation (8) apart from q$ = rinsteadofp, in the subsequent evaluation 
of the sums. Thus here the results used in § 2 may be found by replacing r byp.  

With these agreements all the different sums may be evaluated without problems but 
with considerable effort, yielding the following results: 
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i f c x = O  

if (Y > 0 B {2rv +p[a- 1 + 2v2/(1 - v2)]}q 

1 + p 2  
12 ( 7 P + T )  1 - vp i f a = O  
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c c;sc~-"+l +cg+1cp-a 2s 2s 

B 

A p (1 + vp )v "p  " + ( p  + A)A" 
2 2 ( 1 - vAp 
r 

+-(1 +A)A" + - 
- - 1 ifa>O 

A"(1 + p A ) - p " v " ( l +  vp) 
A - p v  

+ 
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